The yeast poly(A)-binding protein Pab1p stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms.
نویسندگان
چکیده
Translation initiation in extracts from Saccharomyces cerevisiae involves the concerted action of the cap-binding protein eIF4E and the poly(A) tail-binding protein Pab1p. These two proteins bind to translation initiation factor eIF4G and are needed for the translation of capped or polyadenylated mRNA, respectively. Together, these proteins synergistically activate the translation of a capped and polyadenylated mRNA. We have discovered that excess Pab1p also stimulates the translation of capped mRNA in extracts, a phenomenon that we define as trans-activation. Each of the above activities of Pab1p requires its second RNA recognition motif (RRM2). We have found that RRM2 from human PABP cannot substitute functionally for yeast RRM2. Using the differences between human and yeast RRM2 sequences as a guide, we have mutagenized yeast RRM2 and discovered residues that are required for eIF4G binding and poly(A)-dependent translation but not for trans-activation. Similarly, other residues within RRM2 were found to be required for trans-activation but not for eIF4G binding or poly(A)-dependent translation. These data show that Pab1p has at least two biochemically distinct activities in translation extracts.
منابع مشابه
A common function for mRNA 5' and 3' ends in translation initiation in yeast.
The mRNA poly(A) tail and its associated poly(A) binding protein (Pab1p) are ubiquitous in eukaryotes. The function of the poly(A) tail is to stabilize mRNA and to stimulate its translation. The development of a poly(A)- and cap-dependent yeast in vitro translation system has allowed us to understand how poly(A) stimulates translation. We find that Pab1p but not the cap binding protein eIF-4E i...
متن کاملTranslation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation.
The yeast translation factor eIF4G associates with both the cap-binding protein eIF4E and the poly(A)-binding protein Pab1p. Here we report that the two yeast eIF4G homologs, Tif4631p and Tif4632p, share a conserved Pab1p-binding site. This site is required for Pab1p and poly(A) tails to stimulate the in vitro translation of uncapped polyadenylylated mRNA, and the region encompassing it is requ...
متن کاملAnalysis of an essential requirement for the poly(A) binding protein function using cross-species complementation
Poly(A) binding protein (PABP) is an essential, well-conserved, multifunctional protein involved in translational initiation, mRNA biogenesis, and degradation [1--5]. We have used a cross-species complementation approach to address the nature of the essential requirement for PABP in yeast. The expression of Pab3p, a member of the Arabidopsis thaliana PABP multigene family, rescues the lethal ph...
متن کاملPurification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملPositive and negative regulation of poly(A) nuclease.
PAN, a yeast poly(A) nuclease, plays an important nuclear role in the posttranscriptional maturation of mRNA poly(A) tails. The activity of this enzyme is dependent on its Pan2p and Pan3p subunits, as well as the presence of poly(A)-binding protein (Pab1p). We have identified and characterized the associated network of factors controlling the maturation of mRNA poly(A) tails in yeast and define...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 18 11 شماره
صفحات -
تاریخ انتشار 1999